ERYTHOCYTE DISORDERS

ANEMIA

- Decreased Ability to Carry O₂ to Tissues
 - Erythrocyte Loss
 - Impaired Production
- Steady State = Production x Survival

VOLUME CHANGES

- Hypervolemia Increase in Plasma, RBC Steady
 - Pregnancy, Oliguria, Renal Failure, Congestive Heart Failure, Congested Splenomegaly, Chronic Disease, Hypoalbuminemia, Recumbent Posture
- Hypovolemia Decrease in Plasma, RBC Steady
 - Dehydration, Stress, Diabetic Acidosis, Intestinal Malfunction

ADAPTIVE MEASURES Increase Oxygenated Blood Flow to

- Tissues
 - Increase Cardiac Output and Rate
 - Increase Circulation Rate
 - Increase Circulation to Vital Organs
- Increase Oxygen Utilization by Tissues
 - Increase 2,3-DPG
 - Decrease Affinity of Hemoglobin due to Bohr Effect

DIAGNOSIS

- Patient History
- Physical Exam
- Laboratory Investigation

LABORATORY TESTS

- RBC Counts
- Hgb
- HCT
- Effects of Age, Altitude, and Smoking

ERYTHOCYTE INDICES

- Mean Cell Volume MCV
- Mean Corpuscular Hemoglobin MCH
- Mean Corpuscular Hemoglobin Concentration - MCHC
- Red Cell Distribution Width RDW

MCV

MCV (fL) = HCT (L/L)/RBC (x10⁹) x 1000

- Normocytic = 80-100 fL
- Microcytic = <80 fL</p>

Macrocytic = >100 fL

MCH

- MCH (pg)= Hgb g/dl X 10/ RBC (X 10⁹)
- MCH does not take into account of the size of the cell. Use MCV to interpret results.
- 26-34 pg

MCHC

- MCHC (g/dL) = Hgb (g/dl)/HCT (L/L)
- Normochromic = 32-36 g/dL
- Hypochromic = <32 g/dL</p>
- Hyperchromic = >36 g/dL

RED CELL DISTRIBUTION WIDTH

- SD of MCV x 100/ mean MCV = RDW
- Reference Range 11.5-14.5%

RETICULOCYTE COUNT

- Reference Range 0.8-4% or 18-158 x 10⁹
- Absolute Count = RBC x Reticulocyte Count
- Corrected Reticulocyte Count = Patient HCT/Normal HCT x % Reticulocyte

RETICULOCYTE PRODUCTION INDEX

RPI = Patient HCT/ 0.45 L/L x Retic %/Retic Maturation Time

RPI > 2 = Appropriate Response RPI < 2 = Inadequate or Ineffective Response

BLOOD SMEAR EVALUATION

- 7 μm Biconcave Discocyte
- Anisocytosis = Variation in Size - Slight, Moderate, Marked 1-4+

ANISOCYTOSIS

- Macrocytes = >8 µm, MCV >100 fL
 - Vitamin B12 or Folate Deficiency, Hemolytic Anemia, Liver Disease, Asplenia, Aplastic Anemia, Myelodysplasia, Endocrinopathies
- Microcytes = <7 µm, MCV <80 fL, can be hypochromic or normochromic
 - Iron Deficiency Anemia, Thalssemia, Sideroblastic Anemia

BLOOD SMEAR EVALUATION

Poikilocytosis – Variation in Shape
 Slight, moderate, marked 1-4+

ECHINOCYTES

 Burr cells, Crenated Cells

 Artifact, Liver Disease, PKU, Peptic Ulcers, Ca of Stomach, Heparin Therapy

STOMATOCYTES

- Cup-shaped, Mouth Cell, Mushroom Cap, Uniconcave Disc
 - Hereditary Stomatocytosis, Spherocytosis, Alcoholic Cirrhosis, Lead Intoxication, Neoplasms

SPHEROCYTOSIS

- No Biconcavity, no central pallor, Increased Osmotic Fragility
 - Hereditary Spherocytosis, Immune Hemolytic Anemia, Severe Burns, ABO Incompatibility, Heinz Body Anemia

SHISTOCYTES

Fragmented Cells

 Microangiopathic Hemolytic Anemia, Heart Valve Hemolysis, DIC, Severe Burns, Uremia

ACANTHOCYTOSIS

Spur Cell, irregular thorn like projections

 Abetalipoprotienemia, Alcoholic Liver Disease,
 Disorders of Lipid Metabolism, Post Splenectomy, Fat Malabsorption, Retinitis Pigmentosis

LEPTOCYTOSIS

Thin Cell

 Thalassiemia, Iron Deficiency Anemia, Hemoglobinopathies, Liver Disease

CODOCYTES

- Target cells, Mexican Hat Cells
 - Thalassemia, Hemoglobinopathies, Obstructive Liver Disease, Iron Deficiency Anemia, Splenectomy, Renal Disease, LCAT Deficiency

WAL

DACRYCYTES

 Teardrop, elongated at one end, Pear Shaped
 Thalassemia, Myelofibrosis, Metastatic Cancer to Bone Marrow

DREPANOCYTES

 Sickle Cells, Elongated Crescent Shaped with Pointed Ends

 Sickle Cell Anemia

ELLIPTOCYTES

 Pencil Cells, Cigar Cells, Elongated or Rod Like

 Hereditary Elliptocytosis, Iron Deficiency Anemia, Thalassemia, Anemia Associated with Leukemia

KERATOCYTE

 Helmet Cells, Concavity on one side and 2 hornlike projections on either end
 – Microangiopathic Hemolytic Anemia

KNIZOCYTE

 2 Concavities
 Associated with Sherocytosis

VARIATION IN HEMOGLOBIN

- Normal = MCH 30 pg
- Hypochromic = Central Pallor > 1/3 cell
- Polychromatophilic = Bluish Tinge larger than normal (Reticulocytes)
- Hyperchromic = Not usually Used

ERYTHROCYTE INCLUSIONS

Particulate Matter found in RBC can mean certain disease states

BASOPHILIC STIPPLING

Bluish Black Granular Inclusions
 Artifact, Lead Poisoning, Thalassemia

HOWELL-JOLLY BODIES

 Dark Purple or Violet Spherical Granules
 Post Splenectomy, Megaloblastic Anemia, Some Hemolytic Anemia, Severe Anemia

CABOT RINGS

Figure Eight, Ring or Incomplete Ring
 – Severe Anemia, Dyserythropoiesis

HEINZ BODIES

- Purple bodies not seen with Wright's Stain
 - G6PD Deficiency, Unstable Hemoglobin Disorders, Oxidizing Drugs or Toxins, Post Splenectomy

SIDEROBLASTS AND SIDEROCYTES

- RBC with Iron Granules, use Prussian Blue or Iron Stain
 - Iron Stores and some Disease States

PAPPENHEIMER BODIES

 Iron Containing Granules at Periphery of Cell, Visible with Wright's and Prussian Blue Stain

 Sideroblastic Anemia, Thalassemia, Other Severe Anemia

VARIATION IN RBC DISTRIBUTION

- Rouloux = Erythrocytes stacking, resembles coins
 Multiple Myeloma
 - Multiple Myeloma, Other Gammopathies
- Agglutination = RBC sticking together
 - Cold Agglutination, Autoimmune Hemolytic Anemia

CLASSIFICATION OF ANEMIA

- Morphological Size and Hgb Concentration Using RBC Indices
- Functional
 - Proliferative
 - Maturation
 - Survival